6 resultados para Neoplasias do colo uterino

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose. Aminolevulinic acid (5-ALA) diffusion through both keratinised and non-keratinised tissue, used as a model tissue substrates, was evaluated, together with the depth of permeation and the concentration achieved following delivery from bioadhesive patch and proprietary cream formulations. Materials and Methods. Moisture-activated, bioadhesive patches loaded with 5-ALA at concentrations of 19.0, 38.0 and 50.0 mg cm(-2) and an o/w cream (20% w/w 5-ALA) were radiolabelled with C14 5-ALA and applied to excised human vaginal tissue and porcine skin. After 1, 2 and 4 h, tissue was sectioned in two orientations and the 5-ALA concentration at specific depths determined using autoradiography and liquid scintillation counting (LSC). Results. The stratum corneum was a significant barrier to 5-ALA permeation, with concentrations in tissue dependent on application time and drug loading. 5-ALA was detected at 6 mm using autoradiography after 2 h, with LSC showing phototoxic concentrations at 2.375 mm after 4 h of application. Inclusion of oleic acid and dimethyl sulphoxide in bioadhesive patches increased 5-ALA significantly in neonate porcine tissue, but only for patches cast from blends containing 5% w/w oleic acid. Conclusions. The bioadhesive patch described delivered 5-ALA to depths of at least 2.5 mm in tissue types indicative of vulval skin, suggesting that photodynamic therapy of deep vulval intraepithelial neoplasia is feasible using this means of bioadhesive 5-ALA delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the scientific aims and potentials as well as the preliminary technical design of IRIDE, an innovative tool for multi-disciplinary investigations in a wide field of scientific, technological and industrial applications. IRIDE will be a high intensity "particles factory", based on a combination of high duty cycle radio-frequency superconducting electron linacs and of high energy lasers. Conceived to provide unique research possibilities for particle physics, for condensed matter physics, chemistry and material science, for structural biology and industrial applications, IRIDE will open completely new research possibilities and advance our knowledge in many branches of science and technology. IRIDE is also supposed to be realized in subsequent stages of development depending on the assigned priorities. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of Human papillomavirus (HPV) prevalence and genotype distribution is important for monitoring the impact of prophylactic HPV vaccination. This study aimed to demonstrate the HPV genotypes predominating in pre-malignant and cervical cancers in Northern Ireland (NI) before the vaccination campaign has effect. Formalin fixed paraffin embedded tissue blocks from 2,303 women aged 16-93 years throughout NI were collated between April 2011 and February 2013. HPV DNA was amplified by PCR and HPV genotyping undertaken using the Roche® linear array detection kit. In total, 1,241 out of 1,830 eligible samples (68.0%) tested positive for HPV, with the majority of these [1,181/1,830 (64.5%)] having high-risk (HR) HPV infection; 37.4% were positive for HPV-16 (n=684) and 5.1% for HPV-18 (n=93). HPV type-specific prevalence was 48.1%, 65.9%, 81.3%, 92.2%, and 64.3% among cervical intraepithelial neoplasias (CIN) Grades I-III, squamous cell carcinomas (SCC) and adenocarcinoma (AC) cases, respectively. Most SCC cases (81.3%) had only one HPV genotype detected and almost a third (32.0%) of all cervical pathologies were HPV negative including 51.9% of CIN I (n=283), 34.1% CIN II (n=145), 18.7% of CIN III (n=146), 7.8% of SCC (n=5), and 35.7% of AC (n=5) cases. This study provides important baseline data for monitoring the effect of HPV vaccination in NI and for comparison with other UK regions. The coverage of other HR-HPV genotypes apart from 16 and 18, including HPV-45, 31, 39, and 52, and the potential for cross protection, should be considered when considering future polyvalent vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Access to demographic data that are complete, accurate and up-to-date is fundamental to many aspects of public health, government and academic work and for accurate interpretation of other databases. Health registration data are the prime source of demographic information for health and social care systems; for example, as an indicator of need, as a source of denominators to convert number of events into rates, or in the case of the residential address information as the basis for generating the call-recall invitation letters that are used for most screening programs (e.g. breast, colo-rectal and AAA screening). However, list inflation (ghosts, duplicates or emigrants) and a degree of address inaccuracy are recognised caveats with the health registration data and a recent NILS-related study on breast screening suggests that improved address accuracy might be a fast and efficient means of increasing screening uptake rates in cities and amongst deprived populations. In NI these data are collated by the BSO who uniquely in the UK also have access to data relating to prescribing, dental registrations and use of A&E services. These can be used to supplement the standard demographic and address information by (i) indicating patients who are alive and resident in NI and (ii) providing an independent source of probably improved address information. This study will use the NI Unique Property Reference Number (UPRN), rather than the addresses per se which are difficult to work with, to compare the addresses registered in the BSO with those addresses in the enumerated 2011 census. Assuming that the census is a more accurate source of address information for individuals, a comparison of the health registration addresses with those recorded at the census, the aim of the proposed study will be to (i) characterise the amount and distributions of these differences, (ii) to see what proportion of those who do not attend for screening did not actually receive an invitation letter because the addresses were incorrect, (iii) to determine how much of the social gradient (and urban/rural differences) in screening uptake are due to address inaccuracies, (iv) a comparison of timing of address changes at the BSO will provide information on the delays in updating of addresses.